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Abstract. We study the dynamics of a shock distribution as an initial state for a one-dimensional
asymmetric simple exclusion process with sub-lattice parallel update. The time evolution of
the shock distribution can be calculated exactly if the two initial densities of the shock satisfy
a special relation which results from itsUq [SU(2)] symmetry. The resulting distribution is a linear
combination of shock measures. The motion of the shock position can be interpreted as if it would
perform a biased discrete-time random walk, with hopping rules related to that of a single particle in
the exclusion process. The shock diffusion constant and the shock velocity are calculated exactly.
We obtain simple expressions for these quantities in terms of the shock densities and currents which
we argue to be valid for any pair of shock densities.

1. Introduction

The exploration of exclusion processes plays an important part in special fields of many-
body systems, for example the study of traffic (jams) [1], tagged-particle diffusion (e.g. in
zeolites) [2], reading processes for RNA strands within cells [3] or the description of motion
of entangled polymers [4].

The asymmetric simple exclusion process (ASEP) is a model of diffusing identical particles
with hard-core interaction on a lattice. Every single particle performs a biased random walk,
but at the same time they obey the exclusion principle which prohibits the occupation of a lattice
site by more than one particle. A considerable amount of exact results including stationary
states, correlation functions and lengths were obtained by using probabilistic tools [5], the
Bethe ansatz and related quantum mechanical methods [6] or the matrix product ansatz [7].

In this paper we will concentrate on the temporal evolution of a shock in a special ASEP. We
calculate the full time evolution of an initial shock measure which will be shown to evolve into
a linear combination of similar shock distributions if a particular constraint between hopping
probabilities of the exclusion particles and the shock densities is fulfilled. It will transpire that
the shock—which represents the collective motion of many particles—may be described by
only one parameter, the shock position. This position represents the increase or decrease of
the densities in the ensemble average. Such a reduced description in terms of the stochastic
dynamics of a single coordinate can be motivated by the every day experience of traffic jams,
but also by Monte Carlo simulations of the exclusion process [8, 9] where the existence of a
sharp shock is not a priori clear. We stress that the particle dynamics in the exclusion process
takes place on a microscopic scale whereas quantities like the shock positions usually appear
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in a macroscopic framework of some description†. It is well known that on a macroscopic
level corresponding to the Euler scale a shock can be viewed as a collective single particle
excitation. However, usually the macroscopic results are only approximate but not exact due
to the reduction of the degrees of freedom. Hence it is surprising that this exclusion model
yields exact single-particle dynamics for the shock even on the microscopic lattice scale. Thus
we are furnished with a nice, but rare instance where the emergence of macroscopic degrees of
freedom can be directly deduced from microscopic scales without invoking any approximation
or taking any scaling limit.

A few remarks on related work are relevant here. There are studies of the time evolution of
shocks for the continuous-time exclusion process which involve the introduction of so-called
second-class particles [10, 11]. This technique yields exact (and rigorous) results in certain
scaling limits without constraints on the hopping rates and boundary densities of the shock. In
our approach second-class particles do not appear. Instead we make use of a quantum algebra
symmetry of the generator of the process (first pointed out in [12,13]) which allows us to directly
relate the time evolution of a shock to the time evolution of a single particle if the boundary
densities of the inital shock measure satisfy a specific relation involving the right/left hopping
rates. This approach was employed in recent work on the continuous-time ASEP [14] to obtain
rigorously the time evolution of shock measures. Here we discuss a discrete-time exclusion
process with sub-lattice update and a corresponding sub-lattice structure of the stationary
distribution. This generalized model includes the continuous-time process as the limiting
case where all hopping probabilities tend to zero (see section 3 where a precise definition of
the model is given). Our results differ from those of [14] in various aspects related to the
sub-lattice nature of the dynamics and—more importantly—in the exact expression for the
diffusion coefficient of the shock derived below.

From a mathematical angle it is also interesting to note that while the quantum algebra
symmetry requires us to take the thermodynamic limit, a single-shock picture remains valid also
in the continuous-time exclusion process on a finite lattice with open boundaries if a constraint
on the boundary injection/absorption rates analogous to our constraint is satisfied [15]. It
would be interesting to investigate whether this extends to the ASEP studied here, but also on
a finite lattice with open boundaries. This is, however, not the objective of this paper which
deals only with the thermodynamic limit.

Finally, we point out that unlike in the studies using second-class particles we work
on the lattice scale without taking scaling limits. However, we restrict ourselves to a one-
parameter family of shock measures which satisfy the constraint referred to above. Even
though we repeatedly refer to the quantum algebra symmetry of the process which leads to this
constraint, this symmetry does not enter explicitly in our calculations. We only make use of
one consequence—the closure of the equations of motion for a certain family of observables;
see section 3.3—which is crucial to the derivation of the time evolution of the shock measure.
For more details we refer to [16] where the closure of the equations of motion is derived and
discussed in some detail.

The paper is organized as follows. In section 2 we set up the formalism in which we shall
present the exclusion process (section 3) and which allows us to use the quantum mechanical
tools required for reducing the shock dynamics to single-particle dynamics. This is also the
subject of section 3 where the main result, the time evolution of an initial shock measure, is
presented. Expressing the exact drift velocity and diffusion constant of the shock in terms of

† More precisely speaking a lattice gas description refers to a mesoscopic scale rather than a microscopic one, governed
by Newtons or quantum mechanical equations of motion. However, it has become customary to use the notion
microscopic for lattice gas models, particularly when this is meant in contrast to the macroscopic hydrodynamical
approach.
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the currents and densities characterizing the initial shock distribution allows us to draw some
conclusions which may be valid in more general settings (section 4). In the appendix we
analyse the properties of the associated single-particle random walk.

2. The quantum Hamiltonian formalism

We want to apply the ‘quantum Hamiltonian’ formalism [6], which was originally introduced
for spin systems [17] and later also for ‘bosonic’ systems where particles do not have excluded
volume [18–21], and for exclusion models [22, 23]. The starting point is a balance equation,
the master equation, which connects the probabilities P(n, t) of states n at time t . Formally,
it can be written in the following discrete manner:

P(n, t +
t) =
∑
m

pnmP (m, t). (1)

The system evolves from a set of states m with the transition probabilities pnm ∈ [0, 1] to the
unique state n during one time step 
t . Later, m and n will represent lattice vectors over all
occupation numbers ∈ 0, 1.

To set up the quantum Hamiltonian formalism let us introduce a vector space (Fock space)
where each state n is assigned to a vector |n〉 (or to 〈n|, its dual vector) with scalar product
〈n|m〉 = δm,n. These states represent possible particle configurations at different lattice sites.
Then the total temporal evolution of the probability vector |P(t)〉 starting with the initial state
P(t) during 
t can be expressed by

|P(t +
t)〉 = T |P(t)〉 (2)

since T is the stochastic transfer matrix. Its formal solution is given by

|P(t)〉 = |P(n
t)〉 = T n|P(0)〉 (3)

if |P(0)〉 is the initial distribution and t = n
t . The probability vector can be decomposed
into the state vectors |n〉 by using the probabilities P(n, t)

|P(t)〉 =
∑
n

P (n, t)|n〉. (4)

For a lattice system of size 4L with site occupation numbers nk ∈ {0, 1} the state |n〉 =⊗2L
k=−2L+1 |nk〉 is the tensor product of all local states over the lattice. We choose a basis such

that |nk = 1〉 = ( 0 1 )T if the position k is occupied by a particle and |nk = 0〉 = ( 1 0 )T

otherwise. The expectation value of an arbitrary quantity G is given by

〈G〉 =
∑

	n
G(	n)P (	n, t) (5)

and represents the expectation values over many realizations of the same process (ensemble
average). In the Fock space this can be expressed by

〈G〉 = 〈	r|G|P(t)〉 (6)

where 〈	r| = 〈r|⊗4L and 〈r| = ( 1 1 )T is the reference vector which has all components equal
to 1. This implies that G has a diagonal form G = ∑

n G(n)|n〉P(n, t)〈n|. As a special case

ρi = 〈	r|ni |P(t)〉 (7)

we find the expectation value for the density if ni is the number operator of the lattice site i.
The evolution ofG is performed by the action of the transfer matrix T on the probability vector

〈G(t)〉 = 〈	r|GT n|P(0)〉. (8)
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Figure 1. Parallel update sequence of a ASEP (in direction of the large arrow on the rhs). Small
arrows indicate possible jumps. Each cell represents a lattice site. Particles which have moved in
the first half step (odd sub-lattice) are shown in dark grey in the second half step.

The conservation of the total probability

1 =
∑
n

P (n, t) = 〈	r|P(t)〉∀t (9)

implies that 〈	r| is an eigenvector of T

〈	r|T = 〈	r| (10)

with eigenvalue 1. That means simply that the sum of all transition probabilities is equal to 1.
A probability distribution |P(t)〉 which is invariant under time translation T is called

stationary. We denote it by |P ∗〉. The diagonal matrix which has the stationary probabilities
as the diagonal elements is denoted by P ∗. Hence we have

T |P ∗〉 ≡ T P ∗|	r〉 = |P ∗〉. (11)

The stationary state |P ∗〉 is usually not identical to |	r〉 but is a more complex object.

3. Shock motion in the sub-lattice ASEP

3.1. The asymmetric exclusion model

Following the idea proposed in [24,25] we study an exclusion process which can be connected
to a six vertex model [26]. In a chain of length 4L (beginning from −2L + 1) every lattice
site can be occupied by a particle or not. The constraint of a finite chain will be lifted later for
an infinite chain in the thermodynamic limit. We include hard-core interaction between the
particles, so if one place is occupied by a particle no other one can jump on it. The stochastic
time evolution of the system proceeds in two half-time steps. For this purpose we will divide
the chain into pairs of sites as shown in figure 1.

(1) We choose the pairs for the first half-time step, t → t + 1
2 , in such a way that the first

lattice index is odd. That is, (−2L + 1,−2L + 2) . . . (2L − 1, 2L) form pairs, and the
evolution only takes place between these two lattice points in a parallel update. Hence, if
both sites are occupied or empty, they remain unchanged. However, if one of these sites
is empty and the other not, the particle jumps onto it with probability pL (pR) if the jump
is to the left (right).

(2) In the second half-time step, t + 1
2 → t + 1, the pairing is shifted by one lattice unit and the

even pairs (−2L + 2,−2L + 3) . . . (2L− 2, 2L− 1) will be updated in the same manner
as above. Notice that the first and the last site are excluded in this update step whereas
the boundary sites are involved during the first time step.

With this choice of reflecting boundary conditions the model satisfies detailed balance.
The steady state is identical to that of the usual exclusion process in continuous-time and
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is described in detail in [13]. The continuous-time exclusion process is obtained from the
discrete-time model by taking the limit pR, pL → 0 with fixed ratio

q2 = pR

pL
(12)

expressing the asymmetry in the hopping process. The continuous-time parameter τ (setting
the hopping timescale) is obtained by taking the limit t → ∞, keeping τ = t (pR + pL) fixed.

In the next step we want to specify the dynamics of this parallel update ASEP model in
terms of the quantum Hamilton formalism. If we denote the first temporal step T̂o, the second
one T̂e and the total temporal evolution T̂ we can then express the total time evolution as
follows:

T̂ = T̂eT̂o. (13)

The discrete operator T̂o can be encoded in the quantum Hamiltonian form

T̂o =
L∏

k=−L+1

{1 − pR[n2k−1(1 − n2k)− s+
2k−1s

−
2k] − pL[(1 − n2k−1)n2k − s−2k−1s

+
2k]}

=
L∏

k=−L+1

T̂o,(2k−1) =
L∏

k=−L+1




1 0 0 0
0 1 − pL pR 0
0 pL 1 − pR 0
0 0 0 1




2k−1,2k

(14)

where the nk are the number operators giving the occupation number at site k and

s+
k =

(
0 1
0 0

)
k

s−k =
(

0 0
1 0

)
k

(15)

are spin ladder operators acting non-trivially on site k but as unit elements on all other sites,
i.e., for any single-site operator A,

Ak = 1 ⊗ · · · 1 ⊗ A⊗ 1 · · · ⊗ 1. (16)

One should stress that we connect particle occupancies with spins only for convenience.
Analogously one can define T̂e, with the local (2k − 1, 2k) transfer matrix in (14) replaced
by a similar (2k, 2k + 1) transfer matrix and k ∈ [−L + 1, L − 1]. It is easy to check that
the stationary state of this chain has no correlations, i.e., is a product measure, but it requires
two different densities for the odd and even sub-lattices, respectively [25]. We denote these
sub-lattice densities by

ρA = 〈n2k−1〉 and ρB = 〈n2k〉. (17)

In vector notation such a product state may be written

|P ∗〉 =
L∏

k=−L+1

(
1 − ρA 0

0 ρA

)
2k−1

(
1 − ρB 0

0 ρB

)
2k

|	r〉

= [(1 − ρA)(1 − ρB)]2L
L∏

k=−L+1

ẐA2k−1Ẑ
B
2k|	r〉 (18)

with

ẐA/B =
(

1 0
0 zA/B

)
and zA/B = ρA/B

1 − ρA/B
. (19)

Defining the local two-component vectors

|ρA,B〉 =
(

1 − ρA,B

ρA,B

)
(20)
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Figure 2. Schematic representation of the density profile in an upward shock at site 2k.

the stationarity distribution may alternatively be written

|P ∗〉 = |ρA〉 ⊗ |ρB〉 · · · |ρA〉 ⊗ |ρB〉. (21)

To prove the stationary element we note that the local hopping matrix Tk acting on this
vector exchanges the A and B sub-lattice densities in a (k, k + 1) pair provided that they are
related by

(1 − pR)z
A = (1 − pL)z

B. (22)

With the sub-lattice update sequence chosen above, T̂o interchanges all sub-lattice densities
when acting on the stationary state, i.e. it shifts the density by one lattice unit. In the next step
T̂e shifts the sub-lattice densities again by unity (except in the boundary sites −2L + 1 and
2L respectively), hence restoring the original bulk state. Neglecting the boundaries (or in the
special case of periodic conditions which we do not consider here) the stationary element of
the product state with arbitrary total density ρ = 1

2 (ρ
A +ρB) ∈ [0, 1], but sub-lattice densities

satisfying the constraint (22) is proved.

3.2. Definition of a shock

In this section we will calculate the temporal distribution for a family of shock initial states.
Although we intend to carry out the computation in the thermodynamic limit we begin with a
finite chain of 4L sites. The evolution of the system will be described by the transfer matrix
T̂ mentioned above in the description of the quantum Hamiltonian formalism.

Our shock at position 2k + 1 is defined in the following manner (figure 2): up to a position
2k the product measure on {0, 1} has the density

ρ1 = 1
2 (ρ

A
1 + ρB1 ) (23)

whereas all other sites �2k + 1 have density

ρ2 = 1
2 (ρ

A
2 + ρB2 ). (24)

Notice that the individual sub-lattice densities ρA,B1,2 are then fixed in each domain by (22). We
call this measure a shock measure at 2k + 1 and denote it by µ2k+1. Shocks at an even position
2k are defined as follows: up to site 2k− 2 the density is ρ1. At site 2k− 1 (2k) the density is
ρA1 (ρB2 ). At all other sites the density is ρ2. The jump in the densities ρ1,2 may be regarded as
a domain wall connecting two stationary regions of the system. In order to have a stable shock
which does not smear out in time we use the stability criterion of [6] which requires ρ1 < ρ2

for the ASEP discussed here.
It is convenient to represent the shock measure µk as a vector |µk〉 in the Fock space. In

this formalism it is a tensor product similar to the stationary product measure (18), but with two
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different bulk particle densities (for details, see below). In terms of this vector we can state the
main result of this paper which describes the time evolution of an initial shock measure under
the action of the transfer matrix T̂ (13). We find the measure at time t for a certain relation
between the shock densities ρ1,2 (specified below) as given by the linear combination

|µk(t)〉 =
∑
l

πkl (t)|µl〉. (25)

The coefficients πkl (t) calculated below can be interpreted as the transition probability of the
shock to move from site k to site l after t time steps.

In order to obtain these transition probabilities and understand their physical origin we
first show how a shock measure evolves after one time step, i.e., we calculate T̂ |µk(t)〉. As an
input we use the fact that when acting with T̂ to the left, there is a family of observables Q̂k ,
indexed by the lattice site k, for which the resulting equations of motion form a closed set, i.e.
without leading to an infinite hierachy of equations. This property is a result of the quantum
group symmetry Uq[SU(2)] of the process [13,16]. In a series of technical steps (section 3.3)
we determine two transformations D̂, V̂ which relate the transpose of the transformed transfer
matrix to the original transfer matrix and which therefore allows us to turn the closed set of
dynamical equations for the observables Q̂k into a closed set of equations for unnormalized
initial distributions. To this end one has to apply the transformation to the transpose of 〈	r|Q̂k .
Normalizing the resulting distributions yields the shock measures. Putting everything together
(section 3.4) then yields the desired result, i.e., the evolution of a shock measure after one time
step. Since in the derivation of section 3.3 we have neglected the action of the transformations
on the boundary we have to correct for this by taking the thermodynamic limit. This is
discussed in a non-technical manner in section 3.5. We remark that for the continuous-time
process studied in [14] the transformation is trivial and is not included. However, taking
the thermodynamic limit remains necessary and is implemented in a mathematically rigorous
manner.

3.3. Dynamics of the shock

First, we introduce a diagonal operator

Q̂k :=
2L∏
l=k

(
1 0
0 q2

)
l

≡
2L∏
l=k
'l (26)

(k may be even or odd) which is related to the shock as will be shown below. Let us start with
one-time step evolution of Q̂k

〈Q̂k(t + 1)〉 = 〈	r|Q̂kT̃ V̂
T |P(t)〉 = 〈	r|Q̂kT̃oT̃eV̂

T |P(t)〉 (27)

with the initial distribution V̂ |P(t)〉, and V̂ is a diagonal operator. Here we used a slightly
different stochastic transfer matrix T̃ = T̃oT̃e where compared to above we changed the update
sequence and exchanged the hopping probabilities pR ⇔ pL. It is known from the quantum
group symmetry (Uq[SU(2)] with q as the asymmetry ratio (12)) that the time evolution of
Q̂k yields a closed set of equations in the site index k which can be interpreted as one-particle
dynamics [13,16]. Now we want to exploit this result by applying it to our original dynamics.
Transposing the expectation value (27) yields

〈P(0)|V̂ T̃ Te T̃ To Q̂k|	r〉. (28)

We want to choose V̂ Q̂k such that V̂ Q̂k|	r〉 is a shock at position kwhich contains stationary
regions in front of and behind the shock as defined above. Because V̂ and Q̂k (both diagonal)
commute, V̂ |	r〉 should become a stationary state of the whole system, whereas Q̂k fixes the
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position where the density changes. Given the alternating density of the stationary state we
may write V̂ = ⊗L

k=−L+1(V̂
A ⊗ V̂ B) where V̂ A,B are diagonal 2 × 2 matrices and ⊗ denotes

the tensor product. This determines the elements of V̂ up to an irrelevant constant factor

V̂ A ⊗ V̂ B = ẐA ⊗ ẐB =




1 0 0 0
0 zB 0 0
0 0 zA 0
0 0 0 zAzB


 (29)

with

zA/B = ρA/B

1 − ρA/B
. (30)

Up to now the total chain has density ρ which we set without loss of generality to ρ1.
Starting from position k we want to create the density ρ2 instead of ρ1. To achieve this goal
we may use the operator

'l =
(

1 0
0 q2

)
l

. (31)

Then the action of the operator 'l on a state |ρ1〉 at one lattice site l is given by

1 + zA/B1

1 + zA/B2

'l|(ρA/B1 )l〉 = 1

1 + zA/B2

Ẑ
A/B

2 |rl〉 = |(ρA/B2 )l〉. (32)

We see that on site l we generate a state with a different density defined by the constraint

q2 = zA2

zA1
= zB2

zB1
. (33)

By applying 'l to all sites of the chain larger than k, i.e. acting with Q̂k on the product state
|ρ1〉, yields a state corresponding to a shock measure with shock densities ρA/B1,2 related by (33).

The operator Q̂2k+1 of the whole chain, ρ2 beginning from 2k + 1, therefore may be written

Q̂2k+1 = 1⊗2(L+k) ⊗
[(

1 0
0 zA2

zA1

)
⊗

(
1 0
0 zB2

zB1

)]⊗(L−k)
. (34)

The shock representation follows immediately (up to the normalization)

V̂ Q̂2k+1 = (ẐA1 ⊗ ẐB1 )
⊗(L+k) ⊗ (ẐA2 ⊗ ẐB2 )

⊗(L−k). (35)

Coming back to the time evolution of Q̂k one continues computing and obtains

〈P(0)|(V̂ T̃ Te T̃ To V̂ −1)V̂ Q̂k|	r〉 = 〈P(0)|(V̂ T̃ Te X̂−1)(X̂T̃ To V̂
−1)V̂ Q̂k|	r〉 (36)

where X̂ is a further diagonal matrix to be determined. Notice that the transpose matrices T̃ Te
and T̃ To are no longer stochastic. To retain stochastic matrices we require that

(V̂ T̃ Te X̂
−1) = T̂e and (X̂T̃ To V̂

−1) = T̂o. (37)

Thus, we obtain the original transfer matrix (13) again. To determine X̂ one applies the linear
shift operator D̂ to shift all operators from one sub-lattice to the other and get by means of (37)

D̂V̂ D̂−1 = X̂. (38)

To summarize, the matrices satisfy the relations

(V̂ T̃ Te D̂
−1V̂ −1D̂) = T̂e and (D̂V̂ D̂−1T̃ To V̂

−1) = T̂o. (39)
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Together with the condition of the stationary element, we recover from this relation the
constraint (22) inside a domain (of course separately valid for each domain 1 and 2, that
is the reason why we will call it the intra-domain relation).

In the next step we proceed with the shock as a wall separating two domains of stationary
states with densities ρ1 and ρ2, respectively. Starting from the representation of the stationary
state for V̂ (29), Q̂2k+1 (34) and the requirement that V̂ Q̂2k+1|	r〉 should be a normalized shock
the initial distribution for an odd-type shock at position 2k + 1 results in

|µ2k+1〉 = V̂ Q̂2k+1|	r〉

= C−1

(
(1 + zB2 )(1 + zA2 )

(1 + zB1 )(1 + zA1 )

)L+k

(ẐA1 )
N̂2k−1(ẐB1 )

N̂2k

×(ẐA2 )N̂o−N̂2k−1(ẐB2 )
N̂e−N̂2k |	r〉 (40)

where

C = ((1 + zB2 )(1 + zA2 ))
2L (41)

is the normalization and

N̂2k−1 =
k∑

i=−L+1

n2i−1 N̂2k =
k∑

i=−L+1

n2i

N̂o =
L∑

i=−L+1

n2i−1 N̂e =
L∑

i=−L+1

n2i

(42)

are sums of number operators. For an even-type shock at position 2k the distribution reads

|µ2k〉 = (ẐB2 )
n2k (ẐB1 )

−n2k
(1 + zB1 )

(1 + zB2 )
|µ2k+1〉. (43)

3.4. Shock dynamics as a one-particle equation

Taking the odd-position shock representation (40), it easy to see that in the first half-time step
(odd sub-lattice) there is only an update inside the domains because no pair (ρ1, ρ2) exists inside
the chain. Thus, the shock does not move. However, in the second half-time step (even sub-
lattice) there is a sequence (ρ1, ρ2) at pair positions 2k, 2k + 1. To obtain shock distributions
again and to conserve stationarity inside the domains (except at the boundaries which we
consider later) there remain three possible sequences inside this pair after the temporal update.
Taking these constraints into account the equation of motion |µ2k+1(t + 1)〉 = T̂eT̂o|µ2k+1(t)〉
leads to four equations

T̂eT̂o|µ2k+1(t)〉 = πR|µ2k+2(t)〉 + πL|µ2k(t)〉 + πS |µ2k+1(t)〉 (44)

for three coefficientsπL, πS andπR . This equation is correct up to the treatment of the boundary
discussed below. Thus one can understand the many-particle motion of a shock as a discrete
random walk of only one particle by identifying the position of the shock with the position of
the random walker. Therefore we could reduce degrees of freedom without loss of relevant
information. From (44) we read off the probabilities

πR = pR
1 + zB1
1 + zB2

(45)

πS = (1 − pL − pR)
1 + zA2
1 + zA1

1 + zB1
1 + zB2

(46)

πL = pL
1 + zA2
1 + zA1

(47)
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by using the constraint (33) between the shock densities (which we denote inter-domain relation
in contrast to the intra-domain relation (22)).

Notice that the shock position k is determined by the position where the second density
starts, independently of the sub-lattice structure. For the even shock one obtains

T̂ |µ2k〉 = πSπL|µ2k−1〉 + πSπR|µ2k+1〉 + (2πLπR + πS)|µ2k〉 + π2
L|µ2k−2〉 + π2

R|µ2k+2〉. (48)

The shock distribution turns into a linear combination of the same distributions with weights
identical with the jump probabilities of the evolution of the discrete time random walk. By
iterating the evolution equations (44) and (48) we arrive at the main result (25) of this paper
with the transition probabilities (45)–(47) and the rules described above.

From these rules it is clear that the motion of a shock can be reformulated and understood as
a random walk of a single particle with sub-lattice update according to the following updating
scheme. In the first half-time step we consider only the even sub-lattice. If the particle is at
position 2k then it moves with the probability πL and πR to the left and to the right respectively.
In the second half-time step we shift to the odd sub-lattice and let the particle evolve in the
same manner as in the first half-time step. This procedure leads immediately to the hopping
rules (48). In the same manner one recovers (44) if there was a particle at site 2k + 1 at the
beginning of the first half-step. The solution of this random walk problem yields the transition
probabilities πkl (t).

3.5. Boundary effects

The result of the previous subsection is the equation of motion which holds for the bulk, but
with the incorrect consideration of the boundary (we regarded the finite chain with 4L sites).
The next step is to remedy the influence of the boundary by taking the limit for L to infinity.
Up to this point the ends are ‘incorrectly’ treated, i.e. after one time step we have the density
ρ1
B instead of ρ1

A at the end point −2L + 1 and the density ρ2
A instead of ρ2

B at the other end
points 2L, but the shock distribution is still properly normalized. With the proper treatment of
the boundary equation (44) reads

T̂ |µ2k+1〉 = πS |µ2k+1〉−2L+1,2L + πL|µ2k〉−2L+1,2L + πR|µ2k+2〉−2L+1,2L (49)

where the indices mark the deviation at the boundary for the odd-type shock. For the even-type
shock one obtains

T̂ |µ2k〉 = πSπL|µ2k−1〉−2L+1,2L + πSπR|µ2k+1〉−2L+1,2L

+(2πLπR + πS)|µ2k〉−2L+1,2L + π2
L|µ2k−2〉−2L+1,2L + π2

R|µ2k+2〉−2L+1,2L. (50)

The disturbances of the boundary would evolve and finally destroy the shock distribution.
However, this spreading of the disturbance takes place with a finite speed of two lattice units
per time step. Thus, for L → ∞ and finite time, there is always an infinite unaffected region
around the shock position, i.e. we may conclude

lim
L→∞

|µk(t)〉−2L+1,2L = lim
L→∞

|µk(t)〉 (51)

for all fixed number of time steps t .
Of course, the conservation of probability is still guaranteed because the boundary effects

do not affect the normalization. We conclude that in the thermodynamic limit equations (44)
and (48) are exact. The shock evolves into a linear combination of shock distributions if all
constraints, i.e. the inter-domain relation (33) between the shock densities (resulting from
the Uq[SU(2)] symmetry) and the intra-domain relation (22) (for stationary states within the
domains), are fulfilled.
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4. Conclusions

Using the quantum algebra symmetry of the ASEP with sub-lattice parallel update as an input,
we have obtained the time evolution of an initial shock distribution. Perhaps the most important
observation is the possibility of the description of the collective many-body dynamics by a
stochastic single-particle motion without having to resort to some approximation or scaling
argument. The price we have to pay for obtaining the exact time-dependent shock measure
is a constraint (33) on the shock densities which results from the underlying quantum algebra
symmetry.

By analysing the properties of the associated random walk problem we can calculate the
exact drift velocity and diffusion coefficient of the shock. The shock velocity vS corresponds
to the drift velocity of the random walk if we insert the transition probabilities πS, πR and πL
of (45)–(47) into (A.14). We obtain

vS = 2(pR − pL)(1 − ρB2 − ρA1 )

(1 − pR) + (1 − pL) + (pR − pL)(ρ
B
2 − ρA1 )

= (pR − pL)(1 − ρB2 − ρA1 )

ρ2 − ρ1
(ρA2 − ρB1 ). (52)

If we take the current of both stationary domains [25]

j = pRρ
A(1 − ρB)− pLρ

B(1 − ρA) (53)

and the total densities on both sides, equations (23) and (24), we can rewrite the shock velocity:

vS = j2 − j1

ρ2 − ρ1
. (54)

It is clear that while (54) was derived directly only under the assumption that the constraint (33)
holds, it must be generally valid. This is a simple consequence of mass conservation and reflects
the more general principles of shock dynamics independent of the microscopic details and the
update scheme. The parameter dependence of the shock velocity is shown in figure 3.

If we insert the transition probabilities (45)–(47) into the particle diffusion
coefficient (A.19) we can compute the shock diffusion coefficient

DS = 2(pR + pL) + 2(pR − pL)(ρ
B
2 − ρA1 )

(1 − pR) + (1 − pL) + (pR − pL)(ρ
B
2 − ρA1 )

[
1 −

(vS
2

)2
]

(55)

which represents the width of the shock distribution and thus gives a measure for its fluctuation.
The hopping probability dependence of the diffusion constant is shown in figure 4. It is
remarkable that the diffusion coefficient can also be expressed in terms of currents and densities
of the shock domains. Using (53) one obtains

DS = j2 + j1

ρ2 − ρ1

[
1 −

(vS
2

)2
]
. (56)

We believe not only that the expression (54) for the drift velocity is generally valid, but also
the expression (56). That is, if the constraint (33) is not satisfied and hence a single-particle
picture is not strictly valid on the lattice scale, (56) should remain valid, even though we do
not know of an underlying general principle. This expression for the diffusion coefficient
is different from that of the time-continuous exclusion process [9, 10]. Thus it depends on
the details of the stochastic dynamics. There is, however, an analogy to the time-continuous
exclusion process insofar as in both models the shock dynamics have the same characteristic
long-time properties as single particles in the respective processes, i.e. drift velocity and
diffusion coefficient are the same for shock and particle respectively if one replaces the particle
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Figure 3. Shock velocity vS as function of pR and ρ1 (pL = 0.2, therefore q = 0, . . . , 2).
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Figure 4. Shock diffusion constant DS as function of pR and ρ1 (pL = 0.2, therefore
q = 0, . . . , 2).

hopping rates (probabilities) by effective hopping rates (probabilities) for the shock. Since in
the time-continuous exclusion process the expression of the shock diffusion coefficient in terms
of the currents and densities is generally valid it seems plausible that this would remain true
also for the present discrete-time realization of the exclusion process.
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Appendix. Drift velocity and diffusion constant for the one-particle random walk

The shock |µk〉 is labelled with the index expressing its position (k), which performs a random
walk. We want to denote it for the following computation as a Fock space vector |k〉. From
its random walk dynamics we may calculate its drift velocity and its diffusion constant which
can be identified with the shock velocity and the shock diffusion constant.

Using the system of coupled equations (49) and (50) one can explicitly calculate the higher
moments 〈kn(t)〉

〈kn(t)〉 =
∞∑

k=−∞
knP (k, t) = 〈kne (t)〉 + 〈kno (t)〉 (A.1)

by means of the definition

〈kne (t)〉 :=
∞∑

k=−∞
(2k)nP (2k, t) and 〈kno (t)〉 :=

∞∑
k=−∞

(2k + 1)nP (2k + 1, t). (A.2)

These quantities are moments of the spatial probability distribution of the random walker.
They lead to the drift velocity

v = lim
t→∞(〈k(t + 1)〉 − 〈k(t)〉) (A.3)

and the diffusion constant

D = lim
t→∞〈(k(t + 1)− 〈k(t + 1)〉)2〉 − 〈(k(t)− 〈k(t)〉)2〉. (A.4)

To calculate these moments we write the master equation for the probabilities P(k, t).
This can be formally obtained by starting from the master equation (2) under consideration of
the probability representation (4)

T̂ |P(t)〉 = T̂
∑
l

|l〉 = T̂
∑
l

P ((2l, t)|2l〉 + P(2l + 1, t)|2l + 1〉)

=
∑
l

{[π2
LP (2l, t)]|2l − 2〉 + [πLπSP (2l, t)]|2l − 1〉}

+
∑
l

[πLP (2l + 1, t) + πSP (2l, t) + 2πRπLP (2l, t)]|2l〉

+
∑
l

[πSP (2l + 1, t) + πRπSP (2l, t)]|2l + 1〉

+
∑
l

[πRP (2l + 1, t) + π2
RP (2l, t)]|2l + 2〉. (A.5)

We obtain the odd-type master equation (which, of course, may be found directly from
the definition of the process)

P(2k + 1, t + 1) = 〈2k + 1|T̂ |P(t)〉
= πSP (2k + 1, t) + πLπSP (2k + 2, t) + πRπSP (2k, t) (A.6)

if we apply the orthogonality of the states. Inserting the master equation into the odd part of
the moments (A.2) yields

〈k0
o(t + 1)〉 =

∑
k

P (2k + 1, t + 1)

= πS〈k0
o(t)〉 + (1 − πS)πS〈k0

e (t)〉 (A.7)

bearing the probability conservation πS + πL + πR = 1 in mind.
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In the case of the even-type dynamics one gets equivalently

P(2k, t + 1) = 〈2k|T̂ |P(t)〉
= (2πLπR + πS)P (2k, t) + πLP (2k + 1, t) + πRP (2k − 1, t)

+π2
LP (2k + 2, t) + π2

RP (2k − 2, t). (A.8)

Taking the even part of (A.2) the master equation results in

〈k0
e (t + 1)〉 =

∑
k

P (2k, t + 1)

= (1 − πS)〈k0
o(t)〉 + [(1 − πS)

2 + πS]〈k0
e (t)〉. (A.9)

Due to the conservation 〈k0
e (t)+ k0

e (t)〉 = 1 the equations (A.7) and (A.9) are not independent.
Their stationary solution is given by

〈k0
e 〉 = 1

1 + πS
and 〈k0

o〉 = πS

1 + πS
. (A.10)

This gives the stationary probability of finding the random walker (i.e. the shock position) on
the even and odd sub-lattice, respectively.

To simplify the subsequent calculations we assume as the initial condition that the particle
is sitting at an arbitrary position x on the odd lattice, i.e.

P(k, 0) = δk,x . (A.11)

However, this initial assumption does not influence the asymptotic behaviour. One determines
successively the higher moments from the known lower moments. Thus we get two coupled
equations for the first moments:

〈k1
o(t + 1)〉 = πS〈k1

o(t)〉 + (1 − πS)πS〈k1
e (t)〉 + (πR − πL)πS〈k0

e (t)〉 (A.12)

and

〈k1
e (t + 1)〉 = (1 − πS)〈k1

o(t)〉 + [(1 − πS)
2 + πS]〈k1

e (t)〉
+2(1 − πS)(πR − πL)〈k0

o(t)〉 + (πR − πL)〈k0
e (t)〉. (A.13)

Solving this difference system under consideration of (A.10) and looking for the asymptotic
limit of the particle drift velocity v (A.3) one finds

v = 2
πR − πL

1 + πS
. (A.14)

If one interprets

.R/L = πR/L

1 + πS
(A.15)

as an effective jump probability, v can be written as

v = 2(.R −.L). (A.16)

To determine the diffusion constant we still need the second moments

〈k2
o(t + 1)〉 = πS〈k2

o(t)〉 + (1 − πS)πS〈k2
e (t)〉 + 2(πR − πL)πS〈k1

e (t)〉 + (1 − πS)πS〈k0
e (t)〉

(A.17)

and

〈k2
e (t + 1)〉 = (1 − πS)〈k2

o(t)〉 + [(1 − πS)
2 + πS]〈k2

e (t)〉
+4(1 − πS)(πR − πL)〈k1

o(t)〉 + 2(πR − πL)〈k1
e (t)〉

+(1 − πS)〈k0
o(t)〉 + 2[(1 − πS)

2 + (πR − πL)
2]〈k0

e (t)〉. (A.18)
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Computing this second difference equation system using (A.10) and the results of the first
difference equation system (A.12), (A.13) we get the asymptotic limit of the particle diffusion
constant D (A.4)

D = 2
1 − πS

1 + πS

[
1 −

(v
2

)2
]

(A.19)

using the velocity (A.14). In terms of the effective jump probabilities one has

D = 2(.R +.L)[1 − (.R −.L)
2]. (A.20)

We note that these expressions for the drift velocity and the diffusion coefficient are the
same as those for a single exclusion particle with the sub-lattice dynamics of the exclusion
process described above. Even though the microscopic dynamics of a single exclusion particle
are different from the random walk discussed here the long-time properties are identical.
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[13] Sandow S and Schütz G 1994 Europhys. Lett. 26 7
[14] Belitsky V and Schütz G M 2000 Preprint
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